General workflow on research using microbes or microbe derived enzymes for industrial applications and a schematic representation of mixed sugar utilization in a CCR relaxed LAB strain from one of our research.
General workflow on research using microbes or microbe derived enzymes for industrial applications and a schematic representation of mixed sugar utilization in a CCR relaxed LAB strain from one of our research.

박테리아 및 효모와 같은 미생물은 종종 식품 및 영양, 건강, 농업 및 에너지 분야에서 다양한 제품을 만드는 데 사용됩니다. 이러한 미생물 및 미생물 유래 효소를 사용하기 위해서는 산업적으로 효율적인 균주를 식별하고 설계 및 최적화 실험을 위한 연구가 필요합니다. NFML은 유산균을 이용하여 리그노셀룰로오스 바이오매스 활용에 생명공학을 적용한 경험을 가지고 있습니다. 혼합 설탕 발효를 위한 완화된 탄소 이화산물 억제(CCR) 시스템과 함께 Lactobacillus brevis 균주를 사용을 통하여 최고의 연구를 수행하고 바이오 연료 및 생화학 제품 생산 분야의 연구 및 응용 분야를 지속적으로 알리고 있습니다. 더하여, 공학 및 비공학적 균주를 이용하여 모유 올리고당과 같은 새로운 프리바이오틱스의 생명공학 생산에 대한 다양한 연구를 수행하고 있으며, 미생물 및 효소를 사용하여 다양한 생명공학 연구를 수행하는 연구 그룹과 협력합니다.


연구 결과

  1. Activation of galactose utilization by the addition of glucose for the fermentation of agar hydrolysate using Lactobacillus brevis ATCC 14869. Biotechnology Letters 2022, 44, 823–830.
  2. Biotechnological production of human milk oligosaccharides. Biotechnology advances 2012, 30(6), 1268-1278.
  3. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology (Reading) 2009, 155, 1351-1359.
  4. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Applied microbiology and biotechnology 2010, 86(5), 1375–1385.
  5. Atypical ethanol production by carbon catabolite derepressed lactobacilli. Bioresource technology 2010, 101(22), 8790–8797.
  6. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869. Journal of microbiology and biotechnology 2016, 26(7), 1182–1189.
  7. A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Applied and environmental microbiology 2016, 80(19), 5965-5973.
  8. Improved production of 2'-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from Bacteroides fragilis. Journal of biotechnology 2017, 257, 192–198.
  9. Comparison of Catalyzing Properties of Bacterial 4-α-Glucanotransferases Focusing on Their Cyclizing Activity. Journal of microbiology and biotechnology 2020, 31(1), 43–50.
  10. Enzymatic synthesis and characterization of maltoheptaose-based sugar esters. Carbohydrate polymers 2019, 218, 126–135.
  11. GH57 amylopullulanase from Desulfurococcus amylolyticus JCM 9188 can make highly branched cyclodextrin via its transglycosylation activity. Enzyme & Microbial  Technology 2018, 114:15-21.
  12. Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates. Biotechnology for biofuels 2017, 10, 46.
  13. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied microbiology and biotechnology 2010, 88, 1077-1085.
  14. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose. Biotechnology and bioengineering 2016, 113(11), 2443–2452.
  15. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae.Bioprocess & Biosystem Engineering 2016, 39(6):959-966.
  16. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Journal of industrial microbiology & biotechnology 2002, 29(1), 16–19.
  17. Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. Journal of Industrial Microbiology and Biotechnology 1999, 22, 181-186.